↓ Recommend to follow↓
Author: zsx_yiyiyi
Edit: python base camp
Life is too short to learn Python!
Today I will share with you a compilation of 25 Matplotlib graphs, most useful in data analysis and visualization.
# !pip install brewer2mpl
import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
import seaborn as sns
import warnings; warnings.filterwarnings(action= 'once' )
large = 22 ; med = 16 ; small = 12
params = { 'axes.titlesize' : large,
'legend.fontsize' : med,
'figure.figsize' : ( 16 , 10 ),
'axes.labelsize' : med,
'axes.titlesize' : med,
'xtick.labelsize' : med,
'ytick.labelsize' : med,
'figure.titlesize' : large}
plt.rcParams.update(params)
plt. style.use( 'seaborn-whitegrid' )
sns.set_style( "white" )
%matplotlib inline
# Version
print (mpl.__version__) #> 3.0.0
print (sns.__version__) #> 0.9.0
# Import dataset
midwest = pd.read_csv( "https://raw.githubusercontent.com/selva86/datasets/master/midwest_filter.csv" )
# Prepare Data
# Create as many colors as there are unique midwest['category']
categories = np.unique(midwest[ 'category' ])
colors = [plt.cm.tab10(i/ float (len(categories)-1)) for i in range(len(categories))]
# Draw Plot for Each Category
plt.figure(figsize=(16, 10), dpi= 80, facecolor= 'w' , edgecolor= 'k' )
for i, category in enumerate(categories):
plt.scatter( 'area', 'poptotal' ,
data=midwest.loc[midwest.category==category, :],
s=20, c=colors[i], label=str(category))
# Decorations
plt.gca(). set (xlim= (0.0, 0.1), ylim=(0, 90000),
xlabel= 'Area' , ylabel= 'Population' )
plt.xticks(fontsize=12); plt.yticks(fontsize=12)
plt.title( "Scatterplot of Midwest Area vs Population" , fontsize=22)
plt.legend(fontsize=12)
plt.show()
from matplotlib import patches
from scipy.spatial import ConvexHull
import warnings; warnings.simplefilter( 'ignore' )
sns.set_style( "white" )
# Step 1: Prepare Data
midwest = pd.read_csv( "https://raw.githubusercontent. com/selva86/datasets/master/midwest_filter.csv" )
# As many colors as there are unique midwest['category']
categories = np.unique(midwest[ 'category' ])
colors = [plt.cm.tab10(i /float(len(categories) -1 )) for i in range(len(categories))]
# Step 2: Draw Scatterplot with unique color for each category
fig = plt.figure(figsize=( 16 , 10 ), dpi= 80 , facecolor= 'w' , edgecolor= 'k' )
for i, category in enumerate(categories ):
plt.scatter( 'area' , 'poptotal' , data=midwest.loc[midwest.category==category, :], s= 'dot_size' , c=colors[i], label=str(category), edgecolors= 'black' , linewidths= .5 )
# Step 3: Encircling
# https://stackoverflow.com/questions/44575681/how-do-i-encircle-different-data-sets-in-scatter-plot
def encircle (x,y, ax=None, **kw) :
if not ax: ax=plt.gca()
p = np.c_[x,y]
hull = ConvexHull(p)
poly = plt.Polygon(p[ hull.vertices,:], **kw)
ax.add_patch(poly)
# Select data to be encircled
midwest_encircle_data = midwest.loc[midwest.state== 'IN' , :]
# Draw polygon surrounding vertices
encircle(midwest_encircle_data.area , midwest_encircle_data.poptotal, ec= "k" , fc= "gold" , alpha= 0.1 )
encircle(midwest_encircle_data.area, midwest_encircle_data.poptotal, ec= "firebrick" , fc= "none", linewidth= 1.5 )
# Step 4: Decorations
plt.gca().set(xlim=( 0.0 , 0.1 ), ylim=( 0 , 90000 ),
xlabel= 'Area' , ylabel= 'Population' )
plt.xticks( fontsize= 12 ); plt.yticks(fontsize= 12 )
plt.title( "Bubble Plot with Encircling" , fontsize= 22 )
plt.legend(fontsize= 12 )
plt.show()
# Import Data
df = pd.read_csv( "https://raw.githubusercontent.com/selva86/datasets/master/mpg_ggplot2.csv" )
df_select = df.loc[df.cyl.isin([4,8]), :]
# Plot
sns.set_style( "white" )
gridobj = sns.lmplot(x= "displ" , y= "hwy" , hue= "cyl" , data=df_select,
height=7, aspect=1.6, robust= True, palette='tab10',
scatter_kws=dict(s=60, linewidths=.7, edgecolors='black'))
# Decorations
gridobj.set(xlim=(0.5, 7.5), ylim=(0, 50))
plt.title( "Scatterplot with line of best fit grouped by number of cylinders", fontsize=20)
# Import Data
df = pd.read_csv( "https://raw.githubusercontent.com/selva86/datasets/master/mpg_ggplot2.csv" )
df_select = df.loc[df.cyl.isin([4,8]), :]
# Each line in its own column
sns.set_style( "white" )
gridobj = sns.lmplot(x= "displ" , y= "hwy" ,
data=df_select,
height=7,
robust=True,
palette=' Set1',
col= "cyl" ,
scatter_kws=dict(s=60, linewidths=.7, edgecolors='black'))
# Decorations
gridobj.set(xlim=(0.5, 7.5), ylim=(0, 50))
plt.show()
# Import Data
df = pd.read_csv( "https://raw.githubusercontent.com/selva86/datasets/master/mpg_ggplot2.csv" )
# Draw Stripplot
fig, ax = plt.subplots(figsize=(16,10), dpi= 80)
sns.stripplot(df.cty, df.hwy, jitter=0.25, size=8, ax=ax, linewidth=.5)
# Decorations
plt.title('Use jittered plots to avoid overlapping of points', fontsize=22)
plt.show()
# Import Data
df = pd.read_csv( "https://raw.githubusercontent.com/selva86/datasets/master/mpg_ggplot2.csv" )
df_counts = df.groupby([ 'hwy' , 'cty' ]).size( ).reset_index(name= 'counts' )
# Draw Stripplot
fig, ax = plt.subplots(figsize=( 16 , 10 ), dpi= 80 )
sns.stripplot(df_counts.cty, df_counts.hwy, size=df_counts.counts * 2 , ax=ax)
# Decorations
plt.title( 'Counts Plot - Size of circle is bigger as more points overlap' , fontsize= 22 )
plt.show()
# Import Data
df = pd.read_csv( "https://raw.githubusercontent.com/selva86/datasets/master/mpg_ggplot2.csv" )
# Create Fig and gridspec
fig = plt.figure(figsize=( 16 , 10 ), dpi= 80 )
grid = plt.GridSpec( 4 , 4 , hspace= 0 . 5 , wspace= 0 . 2 )
# Define the axes
ax_main = fig. add_subplot(grid[ :-1 , :-1 ])
ax_right = fig .add_subplot(grid[ :-1 , - 1 ], xticklabels=[], yticklabels=[])
ax_bottom = fig.add_subplot(grid[- 1 , 0:-1 ], xticklabels=[], yticklabels=[])
# Scatterplot on main ax
ax_main.scatter( 'displ' , 'hwy' , s=df.cty* 4 , c=df.manufacturer.astype( 'category' ).cat.codes, alpha=. 9 , data=df, cmap= "tab10" , edgecolors= 'gray' , linewidths=. 5 )
# histogram on the right
ax_bottom.hist(df.displ, 40 , histtype= 'stepfilled' , orientation= 'vertical' , color= 'deeppink' )
ax_bottom.invert_yaxis()
# histogram in the bottom
ax_right.hist(df.hwy, 40 , histtype= 'stepfilled' , orientation= 'horizontal' , color= 'deeppink' )
# Decorations
ax_main.set(title= 'Scatterplot with Histograms
displ vs hwy' , xlabel= 'displ' , ylabel= 'hwy' )
ax_main.title.set_fontsize( 20 )
for item in ([ax_main.xaxis.label, ax_main.yaxis.label] + ax_main.get_xticklabels() + ax_main.get_yticklabels()) :
item.set_fontsize( 14 )
xlabels = ax_main.get_xticks().tolist()
ax_main.set_xticklabels(xlabels)
plt.show()
# Import Data
df = pd.read_csv( "https://raw.githubusercontent.com/selva86/datasets/master/mpg_ggplot2.csv" )
# Create Fig and gridspec
fig = plt.figure(figsize=( 16 , 10 ), dpi= 80 )
grid = plt.GridSpec( 4 , 4 , hspace= 0 . 5 , wspace= 0 . 2 )
# Define the axes
ax_main = fig. add_subplot(grid[ :-1 , :-1 ])
ax_right = fig .add_subplot(grid[ :-1 , - 1 ], xticklabels=[], yticklabels=[])
ax_bottom = fig.add_subplot(grid[- 1 , 0:-1 ], xticklabels=[], yticklabels=[])
# Scatterplot on main ax
ax_main.scatter( 'displ' , 'hwy' , s=df.cty* 5 , c=df.manufacturer.astype( 'category' ).cat.codes, alpha=. 9 , data=df, cmap= "Set1" , edgecolors= 'black' , linewidths=. 5 )
# Add a graph in each part
sns.boxplot(df.hwy, ax=ax_right, orient= "v" )
sns.boxplot(df.displ, ax=ax_bottom, orient= "h")
# Decorations ------------------
# Remove x axis name for the boxplot
ax_bottom.set(xlabel= '' )
ax_right.set(ylabel= '' )
# Main Title, Xlabel and YLabel
ax_main.set(title= 'Scatterplot with Histograms
displ vs hwy' , xlabel= 'displ' , ylabel= 'hwy ' )
# Set font size of different components
ax_main.title.set_fontsize( 20 )
for item in ([ax_main.xaxis.label, ax_main.yaxis.label] + ax_main.get_xticklabels() + ax_main.get_yticklabels()):
item. set_fontsize( 14 )
plt.show()
# Import Dataset
df = pd.read_csv( "https://github.com/selva86/datasets/raw/master/mtcars.csv" )
# Plot
plt.figure(figsize=( 12 , 10 ), dpi= 80 )
sns .heatmap(df.corr(), xticklabels=df.corr().columns, yticklabels=df.corr().columns, cmap= 'RdYlGn' , center= 0 , annot=True)
# Decorations
plt.title( ' Correlogram of mtcars' , fontsize= 22 )
plt.xticks(fontsize= 12 )
plt.yticks(fontsize= 12 )
plt.show()
# Load Dataset
df = sns.load_dataset('iris')
# Plot
plt.figure(figsize=(10,8), dpi= 80)
sns.pairplot(df, kind= "scatter" , hue= "species" , plot_kws =dict(s=80, edgecolor= "white" , linewidth=2.5))
plt.show()
# Load Dataset
df = sns.load_dataset('iris')
# Plot
plt.figure(figsize=(10,8), dpi= 80)
sns.pairplot(df, kind= "reg" , hue= "species" )
plt .show()
# Prepare Data
df = pd.read_csv( "https://github.com/selva86/datasets/raw/master/mtcars.csv" )
x = df.loc[:, [ 'mpg' ]]
df[ 'mpg_z' ] = (x - x.mean())/x.std()
df[ 'colors' ] = [ 'red' if x < 0 else 'green' for x in df[ 'mpg_z' ]]
df.sort_values( 'mpg_z' , inplace= True )
df.reset_index(inplace= True )
# Draw plot
plt.figure(figsize=( 14 , 10 ), dpi= 80 )
plt.hlines(y=df.index, xmin= 0 , xmax=df.mpg_z, color=df.colors, alpha= 0.4 , linewidth= 5 )
# Decorations
plt.gca().set(ylabel= '$Model$ ' , xlabel= '$Mileage$' )
plt.yticks(df.index, df.cars, fontsize= 12 )
plt.title( 'Diverging Bars of Car Mileage' , fontdict={ 'size' : 20 })
plt. grid(linestyle= '--' , alpha= 0.5 )
plt.show()
# Prepare Data
df = pd.read_csv( "https://github.com/selva86/datasets/raw/master/mtcars.csv" )
x = df.loc[:, [ 'mpg' ]]
df[ 'mpg_z' ] = (x - x.mean())/x.std()
df[ 'colors' ] = [ 'red' if x < 0 else 'green' for x in df[ 'mpg_z' ]]
df.sort_values( 'mpg_z' , inplace= True )
df.reset_index(inplace= True )
# Draw plot
plt.figure(figsize=( 14 , 14 ), dpi= 80 )
plt.hlines(y=df.index, xmin= 0 , xmax=df.mpg_z)
for x, y, tex in zip(df.mpg_z, df.index, df.mpg_z):
t = plt.text(x, y, round(tex, 2 ), horizontalalignment= 'right' if x < 0 else 'left' ,
verticalalignment= 'center' , fontdict={ 'color' : 'red' if x < 0 else 'green' , 'size ' : 14 })
# Decorations
plt.yticks(df.index, df.cars, fontsize= 12 )
plt.title('Diverging Text Bars of Car Mileage' , fontdict={ 'size' : 20 })
plt.grid(linestyle= '--' , alpha= 0.5 )
plt.xlim( -2.5 , 2.5 )
plt.show()
# Prepare Data
df = pd.read_csv( "https://github.com/selva86/datasets/raw/master/mtcars.csv" )
x = df.loc[:, [ 'mpg' ]]
df[ 'mpg_z' ] = (x - x.mean())/x.std()
df[ 'colors' ] = [ 'red' if x < 0 else 'darkgreen' for x in df[ 'mpg_z' ]]
df.sort_values( 'mpg_z' , inplace= True )
df.reset_index(inplace= True )
# Draw plot
plt.figure(figsize=( 14 , 16 ), dpi= 80 )
plt.scatter(df.mpg_z, df.index, s= 450 , alpha= .6 , color=df.colors)
for x, y, tex in zip(df.mpg_z, df.index, df.mpg_z):
t = plt.text(x, y, round(tex, 1 ), horizontalalignment= 'center' ,
verticalalignment= 'center' , fontdict={ 'color' : 'white' })
# Decorations
# Lighten borders
plt.gca() .spines[ "top" ].set_alpha( .3 )
plt.gca().spines[ "bottom" ].set_alpha( .3 )
plt.gca().spines[ "right"].set_alpha( .3 )
plt.gca().spines[ "left" ].set_alpha( .3 )
plt.yticks(df.index, df.cars)
plt.title( 'Diverging Dotplot of Car Mileage' , fontdict ={ 'size' : 20 })
plt.xlabel( '$Mileage$' )
plt.grid(linestyle= '--' , alpha= 0.5 )
plt.xlim( -2.5 , 2.5 )
plt.show()
# Prepare Data
df = pd.read_csv( "https://github.com/selva86/datasets/raw/master/mtcars.csv" )
x = df.loc[:, [ 'mpg' ]]
df[ 'mpg_z' ] = (x - x.mean())/x.std()
df[ 'colors' ] = 'black'
# color fiat differently
df.loc[df.cars == 'Fiat X1-9' , 'colors' ] = 'darkorange'
df.sort_values( 'mpg_z' , inplace= True )
df.reset_index(inplace= True )
# Draw plot
import matplotlib.patches as patches
plt.figure(figsize=( 14, 16 ), dpi= 80 )
plt.hlines(y=df.index, xmin= 0 , xmax=df.mpg_z, color=df.colors, alpha= 0.4 , linewidth= 1 )
plt.scatter(df.mpg_z, df.index, color=df.colors, s=[ 600 if x == 'Fiat X1-9' else 300 for x in df.cars], alpha= 0.6 )
plt.yticks(df.index, df.cars)
plt.xticks(fontsize= 12 )
# Annotate
plt.annotate( 'Mercedes Models' , xy=( 0.0 , 11.0 ), xytext=( 1.0 , 11), xycoords= 'data' ,
fontsize= 15 , ha= 'center' , va= 'center' ,
bbox=dict(boxstyle= 'square' , fc= 'firebrick' ),
arrowprops=dict(arrowstyle= '-[ , widthB=2.0, lengthB=1.5' , lw= 2.0 , color= 'steelblue' ), color= 'white' )
# Add Patches
p1 = patches.Rectangle(( -2.0 , -1 ), width= .3 , height = 3 , alpha= .2 , facecolor= 'red' )
p2 = patches.Rectangle(( 1.5 , 27 ), width= .8 , height= 5 , alpha= .2 , facecolor= 'green' )
plt.gca().add_patch(p1)
plt.gca().add_patch( p2)
# Decorate
plt.title( 'Diverging Bars of Car Mileage' , fontdict={ 'size' : 20 })
plt.grid(linestyle= '--' , alpha= 0.5 )
plt.show()
import numpy as np
import pandas as pd
# Prepare Data
df = pd.read_csv("https://github.com/selva86/datasets/raw/master/economics.csv", parse_dates=['date']).head(100)
x = np.arange(df.shape[0])
y_returns = (df.psavert.diff().fillna(0)/df.psavert.shift(1)).fillna(0) * 100
# Plot
plt.figure(figsize=(16,10), dpi= 80)
plt.fill_between(x[1:], y_returns[1:], 0, where=y_returns[1:] >= 0, facecolor='green', interpolate=True, alpha=0.7)
plt.fill_between(x[1:], y_returns[1:], 0, where=y_returns[1:] <= 0, facecolor='red', interpolate=True, alpha=0.7)
# Annotate
plt.annotate('Peak
1975', xy=(94.0, 21.0), xytext=(88.0, 28),
bbox=dict(boxstyle='square', fc='firebrick'),
arrowprops=dict(facecolor='steelblue', shrink=0.05), fontsize=15, color='white')
# Decorations
xtickvals = [str(m)[:3].upper()+"-"+str(y) for y,m in zip(df.date.dt.year, df.date.dt.month_name())]
plt.gca().set_xticks(x[::6])
plt.gca().set_xticklabels(xtickvals[::6], rotation=90, fontdict={'horizontalalignment': 'center', 'verticalalignment': 'center_baseline'})
plt.ylim(-35,35)
plt.xlim(1,100)
plt.title("Month Economics Return %", fontsize=22)
plt.ylabel('Monthly returns %')
plt.grid(alpha=0.5)
plt.show()
# Prepare Data
df_raw = pd.read_csv("https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv")
df = df_raw[['cty', 'manufacturer']].groupby('manufacturer').apply(lambda x: x.mean())
df.sort_values('cty', inplace=True)
df.reset_index(inplace=True)
# Draw plot
import matplotlib.patches as patches
fig, ax = plt.subplots(figsize=(16,10), facecolor='white', dpi= 80)
ax.vlines(x=df.index, ymin=0, ymax=df.cty, color='firebrick', alpha=0.7, linewidth=20)
# Annotate Text
for i, cty in enumerate(df.cty):
ax.text(i, cty+0.5, round(cty, 1), horizontalalignment='center')
# Title, Label, Ticks and Ylim
ax.set_title('Bar Chart for Highway Mileage', fontdict={'size':22})
ax.set(ylabel='Miles Per Gallon', ylim=(0, 30))
plt.xticks(df.index, df.manufacturer.str.upper(), rotation=60, horizontalalignment='right', fontsize=12)
# Add patches to color the X axis labels
p1 = patches.Rectangle((.57, -0.005), width=.33, height=.13, alpha=.1, facecolor='green', transform=fig.transFigure)
p2 = patches.Rectangle((.124, -0.005), width=.446, height=.13, alpha=.1, facecolor='red', transform=fig.transFigure)
fig.add_artist(p1)
fig.add_artist(p2)
plt.show()
# Prepare Data
df_raw = pd.read_csv("https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv")
df = df_raw[['cty', 'manufacturer']].groupby('manufacturer').apply(lambda x: x.mean())
df.sort_values('cty', inplace=True)
df.reset_index(inplace=True)
# Draw plot
fig, ax = plt.subplots(figsize=(16,10), dpi= 80)
ax.vlines(x=df.index, ymin=0, ymax=df.cty, color='firebrick', alpha=0.7, linewidth=2)
ax.scatter(x=df.index, y=df.cty, s=75, color='firebrick', alpha=0.7)
# Title, Label, Ticks and Ylim
ax.set_title('Lollipop Chart for Highway Mileage', fontdict={'size':22})
ax.set_ylabel('Miles Per Gallon')
ax.set_xticks(df.index)
ax.set_xticklabels(df.manufacturer.str.upper(), rotation=60, fontdict={'horizontalalignment': 'right', 'size':12})
ax.set_ylim(0, 30)
# Annotate
for row in df.itertuples():
ax.text(row.Index, row.cty+.5, s=round(row.cty, 2), horizontalalignment= 'center', verticalalignment='bottom', fontsize=14)
plt.show()
# Prepare Data
df_raw = pd.read_csv("https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv")
df = df_raw[['cty', 'manufacturer']].groupby('manufacturer').apply(lambda x: x.mean())
df.sort_values('cty', inplace=True)
df.reset_index(inplace=True)
# Draw plot
fig, ax = plt.subplots(figsize=(16,10), dpi= 80)
ax.hlines(y=df.index, xmin=11, xmax=26, color='gray', alpha=0.7, linewidth=1, linestyles='dashdot')
ax.scatter(y=df.index, x=df.cty, s=75, color='firebrick', alpha=0.7)
# Title, Label, Ticks and Ylim
ax.set_title('Dot Plot for Highway Mileage', fontdict={'size':22})
ax.set_xlabel('Miles Per Gallon')
ax.set_yticks(df.index)
ax.set_yticklabels(df.manufacturer.str.title(), fontdict={'horizontalalignment': 'right'})
ax.set_xlim(10, 27)
plt.show()
import matplotlib.lines as mlines
# Import Data
df = pd.read_csv("https://raw.githubusercontent.com/selva86/datasets/master/gdppercap.csv")
left_label = [str(c) + ', '+ str(round(y)) for c, y in zip(df.continent, df['1952'])]
right_label = [str(c) + ', '+ str(round(y)) for c, y in zip(df.continent, df['1957'])]
klass = ['red' if (y1-y2) < 0 else 'green' for y1, y2 in zip(df['1952'], df['1957'])]
# draw line
# https://stackoverflow.com/questions/36470343/how-to-draw-a-line-with-matplotlib/36479941
def newline(p1, p2, color='black'):
ax = plt.gca()
l = mlines.Line2D([p1[0],p2[0]], [p1[1],p2[1]], color='red' if p1[1]-p2[1] > 0 else 'green', marker='o', markersize=6)
ax.add_line(l)
return l
fig, ax = plt.subplots(1,1,figsize=(14,14), dpi= 80)
# Vertical Lines
ax.vlines(x=1, ymin=500, ymax=13000, color='black', alpha=0.7, linewidth=1, linestyles='dotted')
ax.vlines(x=3, ymin=500, ymax=13000, color='black', alpha=0.7, linewidth=1, linestyles='dotted')
# Points
ax.scatter(y=df['1952'], x=np.repeat(1, df.shape[0]), s=10, color='black', alpha=0.7)
ax.scatter(y=df['1957'], x=np.repeat(3, df.shape[0]), s=10, color='black', alpha=0.7)
# Line Segmentsand Annotation
for p1, p2, c in zip(df['1952'], df['1957'], df['continent']):
newline([1,p1], [3,p2])
ax.text(1-0.05, p1, c + ', ' + str(round(p1)), horizontalalignment='right', verticalalignment='center', fontdict={'size':14})
ax.text(3+0.05, p2, c + ', ' + str(round(p2)), horizontalalignment='left', verticalalignment='center', fontdict={'size':14})
# 'Before' and 'After' Annotations
ax.text(1-0.05, 13000, 'BEFORE', horizontalalignment='right', verticalalignment='center', fontdict={'size':18, 'weight':700})
ax.text(3+0.05, 13000, 'AFTER', horizontalalignment='left', verticalalignment='center', fontdict={'size':18, 'weight':700})
# Decoration
ax.set_title("Slopechart: Comparing GDP Per Capita between 1952 vs 1957", fontdict={'size':22})
ax.set(xlim=(0,4), ylim=(0,14000), ylabel='Mean GDP Per Capita')
ax.set_xticks([1,3])
ax.set_xticklabels(["1952", "1957"])
plt.yticks(np.arange(500, 13000, 2000), fontsize=12)
# Lighten borders
plt.gca().spines["top"].set_alpha(.0)
plt.gca().spines["bottom"].set_alpha(.0)
plt.gca().spines["right"].set_alpha(.0)
plt.gca().spines["left"].set_alpha(.0)
plt.show()
import matplotlib.lines as mlines
# Import Data
df = pd.read_csv("https://raw.githubusercontent.com/selva86/datasets/master/health.csv")
df.sort_values('pct_2014', inplace=True)
df.reset_index(inplace=True)
# Func to draw line segment
def newline(p1, p2, color='black'):
ax = plt.gca()
l = mlines.Line2D([p1[0],p2[0]], [p1[1],p2[1]], color='skyblue')
ax.add_line(l)
return l
# Figure and Axes
fig, ax = plt.subplots(1,1,figsize=(14,14), facecolor='#f7f7f7', dpi= 80)
# Vertical Lines
ax.vlines(x=.05, ymin=0, ymax=26, color='black', alpha=1, linewidth=1, linestyles='dotted')
ax.vlines(x=.10, ymin=0, ymax=26, color='black', alpha=1, linewidth=1, linestyles='dotted')
ax.vlines(x=.15, ymin=0, ymax=26, color='black', alpha=1, linewidth=1, linestyles='dotted')
ax.vlines(x=.20, ymin=0, ymax=26, color='black', alpha=1, linewidth=1, linestyles='dotted')
# Points
ax.scatter(y=df['index'], x=df['pct_2013'], s=50, color='#0e668b', alpha=0.7)
ax.scatter(y=df['index'], x=df['pct_2014'], s=50, color='#a3c4dc', alpha=0.7)
# Line Segments
for i, p1, p2 in zip(df['index'], df['pct_2013'], df['pct_2014']):
newline([p1, i], [p2, i])
# Decoration
ax.set_facecolor('#f7f7f7')
ax.set_title("Dumbell Chart: Pct Change - 2013 vs 2014", fontdict={'size':22})
ax.set(xlim=(0,.25), ylim=(-1, 27), ylabel='Mean GDP Per Capita')
ax.set_xticks([.05, .1, .15, .20])
ax.set_xticklabels(['5%', '15%', '20%', '25%'])
ax.set_xticklabels(['5%', '15%', '20%', '25%'])
plt.show()
# Import Data
df = pd.read_csv("https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv")
# Prepare data
x_var = 'displ'
groupby_var = 'class'
df_agg = df.loc[:, [x_var, groupby_var]].groupby(groupby_var)
vals = [df[x_var].values.tolist() for i, df in df_agg]
# Draw
plt.figure(figsize=(16,9), dpi= 80)
colors = [plt.cm.Spectral(i/float(len(vals)-1)) for i in range(len(vals))]
n, bins, patches = plt.hist(vals, 30, stacked=True, density=False, color=colors[:len(vals)])
# Decoration
plt.legend({group:col for group, col in zip(np.unique(df[groupby_var]).tolist(), colors[:len(vals)])})
plt.title(f"Stacked Histogram of ${x_var}$ colored by ${groupby_var}$", fontsize=22)
plt.xlabel(x_var)
plt.ylabel("Frequency")
plt.ylim(0, 25)
plt.xticks(ticks=bins[::3], labels=[round(b,1) for b in bins[::3]])
plt.show()
# Import Data
df = pd.read_csv("https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv")
# Prepare data
x_var = 'manufacturer'
groupby_var = 'class'
df_agg = df.loc[:, [x_var, groupby_var]].groupby(groupby_var)
vals = [df[x_var].values.tolist() for i, df in df_agg]
# Draw
plt.figure(figsize=(16,9), dpi= 80)
colors = [plt.cm.Spectral(i/float(len(vals)-1)) for i in range(len(vals))]
n, bins, patches = plt.hist(vals, df[x_var].unique().__len__(), stacked=True, density=False, color=colors[:len(vals)])
# Decoration
plt.legend({group:col for group, col in zip(np.unique(df[groupby_var]).tolist(), colors[:len(vals)])})
plt.title(f"Stacked Histogram of ${x_var}$ colored by ${groupby_var}$", fontsize=22)
plt.xlabel(x_var)
plt.ylabel("Frequency")
plt.ylim(0, 40)
plt.xticks(ticks=bins, labels=np.unique(df[x_var]).tolist(), rotation=90, horizontalalignment='left')
plt.show()
# Import Data
df = pd.read_csv("https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv")
# Draw Plot
plt.figure(figsize=(16,10), dpi= 80)
sns.kdeplot(df.loc[df['cyl'] == 4, "cty"], shade=True, color="g", label="Cyl=4", alpha=.7)
sns.kdeplot(df.loc[df['cyl'] == 5, "cty"], shade=True, color="deeppink", label="Cyl=5", alpha=.7)
sns.kdeplot(df.loc[df['cyl'] == 6, "cty"], shade=True, color="dodgerblue", label="Cyl=6", alpha=.7)
sns.kdeplot(df.loc[df['cyl'] == 8, "cty"], shade=True, color="orange", label="Cyl=8", alpha=.7)
# Decoration
plt.title('Density Plot of City Mileage by n_Cylinders', fontsize=22)
plt.legend()
# Import Data
df = pd.read_csv("https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv")
# Draw Plot
plt.figure(figsize=(13,10), dpi= 80)
sns.distplot(df.loc[df['class'] == 'compact', "cty"], color="dodgerblue", label="Compact", hist_kws={'alpha':.7}, kde_kws={'linewidth':3})
sns.distplot(df.loc[df['class'] == 'suv', "cty"], color="orange", label="SUV", hist_kws={'alpha':.7}, kde_kws={'linewidth':3})
sns.distplot(df.loc[df['class'] == 'minivan', "cty"], color="g", label="minivan", hist_kws={'alpha':.7}, kde_kws={'linewidth':3})
plt.ylim(0, 0.35)
# Decoration
plt.title('Density Plot of City Mileage by Vehicle Type', fontsize=22)
plt.legend()
plt.show()
# !pip install joypy
# Import Data
mpg = pd.read_csv("https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv")
# Draw Plot
plt.figure(figsize=(16,10), dpi= 80)
fig, axes = joypy.joyplot(mpg, column=['hwy', 'cty'], by="class", ylim='own', figsize=(14,10))
# Decoration
plt.title('Joy Plot of City and Highway Mileage by Class', fontsize=22)
plt.show()
import matplotlib.patches as mpatches
# Prepare Data
df_raw = pd.read_csv("https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv")
cyl_colors = {4:'tab:red', 5:'tab:green', 6:'tab:blue', 8:'tab:orange'}
df_raw['cyl_color'] = df_raw.cyl.map(cyl_colors)
# Mean and Median city mileage by make
df = df_raw[['cty', 'manufacturer']].groupby('manufacturer').apply(lambda x: x.mean())
df.sort_values('cty', ascending=False, inplace=True)
df.reset_index(inplace=True)
df_median = df_raw[['cty', 'manufacturer']].groupby('manufacturer').apply(lambda x: x.median())
# Draw horizontal lines
fig, ax = plt.subplots(figsize=(16,10), dpi= 80)
ax.hlines(y=df.index, xmin=0, xmax=40, color='gray', alpha=0.5, linewidth=.5, linestyles='dashdot')
# Draw the Dots
for i, make in enumerate(df.manufacturer):
df_make = df_raw.loc[df_raw.manufacturer==make, :]
ax.scatter(y=np.repeat(i, df_make.shape[0]), x='cty', data=df_make, s=75, edgecolors='gray', c='w', alpha=0.5)
ax.scatter(y=i, x='cty', data=df_median.loc[df_median.index==make, :], s=75, c='firebrick')
# Annotate
ax.text(33, 13, "$red ; dots ; are ; the : median$", fontdict={'size':12}, color='firebrick')
# Decorations
red_patch = plt.plot([],[], marker="o", ms=10, ls="", mec=None, color='firebrick', label="Median")
plt.legend(handles=red_patch)
ax.set_title('Distribution of City Mileage by Make', fontdict={'size':22})
ax.set_xlabel('Miles Per Gallon (City)', alpha=0.7)
ax.set_yticks(df.index)
ax.set_yticklabels(df.manufacturer.str.title(), fontdict={'horizontalalignment': 'right'}, alpha=0.7)
ax.set_xlim(1, 40)
plt.xticks(alpha=0.7)
plt.gca().spines["top"].set_visible(False)
plt.gca().spines["bottom"].set_visible(False)
plt.gca().spines["right"].set_visible(False)
plt.gca().spines["left"].set_visible(False)
plt.grid(axis='both', alpha=.4, linewidth=.1)
plt.show()
Long press or scan the QR code below, and reply in the background: Join the group, you can apply to join the group. Be sure to note: source + research direction + school/company, otherwise it will not be included in the group , sorry!
( Press and hold for three seconds to enter the background )
Recommended reading